A small crystal of potassium manganate(V beaker was left standing for wo days with	II) was	s placed in a beaker of king. State and expla	ontaining wat
that were made.		5	(
oe ²			
6× &			
We trade			

Wherea hydrated sample of calcium sulpha	31		
Wherea hydrated sample of calcium sulpha	te CaS	O4•XH2O was heate	d until all the
		- 4 To line Heart	a witter all tile
was lost, the following data was recorded:		TELL I CHARLES AND	
was lost, the following data was recorded:			
was lost, the following data was recorded: Mass of crucible	=		
Mass of crucible	=	30.296 g	
was lost, the following data was recorded:	=		
Mass of crucible Mass of crucible + hydrated salt Mass of crucible + anhydrous salt	=	30.296 g 33.111 g 32.781 g	
Mass of crucible Mass of crucible + hydrated salt Mass of crucible + anhydrous salt Determine the empirical formula of the hydrated	=	30.296 g 33.111 g 32.781 g	
Mass of crucible Mass of crucible + hydrated salt Mass of crucible + anhydrous salt Determine the empirical formula of the hydrated	=	30.296 g 33.111 g 32.781 g	a mass of
Mass of crucible Mass of crucible + hydrated salt	=	30.296 g 33.111 g 32.781 g	a mass of
Mass of crucible Mass of crucible + hydrated salt Mass of crucible + anhydrous salt Determine the empirical formula of the hydrated	=	30.296 g 33.111 g 32.781 g	a mass of
Mass of crucible Mass of crucible + hydrated salt Mass of crucible + anhydrous salt Determine the empirical formula of the hydrated	=	30.296 g 33.111 g 32.781 g	
Mass of crucible Mass of crucible + hydrated salt Mass of crucible + anhydrous salt Determine the empirical formula of the hydrated	=	30.296 g 33.111 g 32.781 g	a mass of
Mass of crucible Mass of crucible + hydrated salt Mass of crucible + anhydrous salt Determine the empirical formula of the hydrated	=	30.296 g 33.111 g 32.781 g	a mass of

Complete the following table by filling in the missing test and observations. (3 marks)

No.	Gas	Test	Observation
1	Chlorine	Put a moist red litmus paper into the gas	
11	Sulphur (IV) oxide	-	Paper turns green
Ш	Butene	Add a drop of bromine water	

10 W 17	
4.	The structure of a detergent

H	H	H	e 19	H	H	H	H	H	H	H	H	H	
1	1	Jos	5	1	1	1	1	1	1	1	1	[C - COO Na	
H- C -	CX	C-	- C -	C -	C -	C -	C -	C-	C -	C -	C	C - COO Na	+
1	200	oth	1	1	1 :	1	1	1	1	1		1	
H	H.	H	H	H	H	H	H	H	H	H	H	H	

(a) Write the molecular formula of the detergent.

(1 mark)

est jost

- (b) What type of detergent is represented by the formula? (1 mark)
- (c) When this type of detergent is used to wash linen in hard water, spots (marks) are left on the linen. Write the formula of the substance responsible for the spots (marks).
 (1 mark)
- Phosphoric acid is manufactured from calcium phosphate according to the following equation.

$$Ca_3(PO_4)_{2(s)} + 3H_2SO_{4(1)} \rightarrow 2H_3PO_{4(aq)} + 3 CaSO_{4(s)}$$

Calculate the mass in (Kg) of phosphoric acid that would be obtained if 155 Kg of calcium phosphate reacted completely with the acid (Ca = 40, P = 31, S = 32, O = 16, H = 1)

(2 marks)

The structure below represents a sweet smelling compound.

Give the names of the two organic compounds that can be used to prepare this compound in the laboratory. (2 marks)

.....

7. (a) What are isotopes? ... (1 mark)

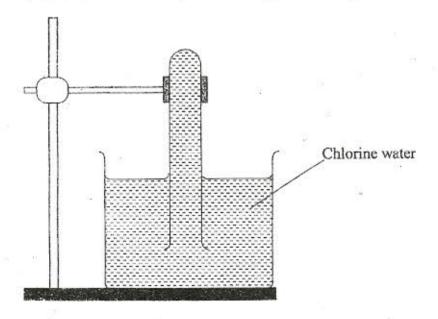
		(b) Determine the number of neutron	is in 80.	(1 mark)
		(a) State the observation made at the powder and sulphur is heated in a (b) Write an equation for the reaction hydrochloric acid.		
		20 to Oth	12 C 23	W 82
		or air.		***************************************
	8.	(a) State the observation made at the	end of the experiment when a	mixture of iron
		e powder and sulphur is heated in a	test tube.	(1 mark)
	· e ·	and the state of t		X
	\$7.1			
405°	dr. Ch	(b) Write an equation for the reaction	between the product in (a) ab	ove and dilute
1363		nydrochloric acid.	10 10 10 10 10 10 10 10 10 10 10 10 10 1	(1 mark)
•				
	a,	(c) When a mixture of iron powder ar		H 9000 5
	12	(c) When a mixture of iron powder are that of iron filings and sulphur. Ex	replain this observation.	more brightly than (1 mark)
			·	.,

	y ¹³⁸			•••••
	9.	Zinc reacts with both concentrated and di	lute sulphuric (VI) acid. Write	a agustiana far tha
	nai a	two reactions.	rate surpriarie (vi) acid. Write	(2 marks)

	50	***************************************	***************************************	
	40			ESSENCE FARM INSTITUTORATE
		a grantweet	= 9 B	
	10.	When magnesium was burnt in air, a solid mixture a gas which turned moist red litm	I mixture was formed. On add us paper blue was evolved. E:	ition of water to the
		observations.		(2 marks)
		***************************************		***************************************
				660
			2	ATTION DESCRIPTION OF THE

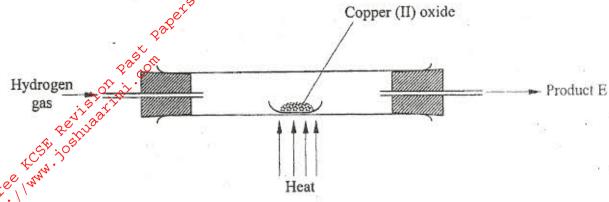
11. The table below gives atomic numbers of elements represented by the letters A, B, C and D.

Element 200	A	В	С	D
Atomec number	15	16	17	20

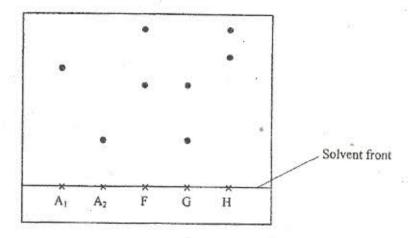

Use the information to answer the questions that follow.

(a) Warne the type of bonding that exists in the compound formed when A and D react.

(1 mark)


(b)	Select the letter which represents the best oxidizing agent.	Give a reason for your
	answer,	(2 marks)

In an experiment, a test-tube full of chlorine water was inverted in chlorine water as shown in the diagram below and the set up left in sunlight for one day.


After	one day, a gas was found to have collected	d in the test-tube.
(a)	Identify the gas.	(1 mark)
(b)	What will happen to the pH of the soluti explanation.	on in the beaker after one day? Give an (2 marks)
		57
		이번 경기에 가게 있다. 어디에 가지 아니라 생각이 되었다고 있는데 모모에 되는 돈이 그 없다.

13. In a laboratory experiment hydrogen gas was passed over heated copper (II) oxide as shown in the diagram below.

\$ 500 \	Heat	
or to	Describe a chemical test that can be used to identify the product \mathbf{E} .	(2 marks
×		
	T 20 5	D

	S	

14. Samples of urine from three participants F, G and H at an international sports meeting were spotted onto a chromatography paper alongside two from illegal drugs A₁ and A₂. A chromatogram was run using methanol. The figure below shows the chromatogram.

(a)	Identify the athlete who had used an illegal drug.	(1 mark)
(b)	Which drug is more soluble in methanol?	(1 mark)

15. The table below gives the solubilities of substances J, K and L at different temperatures.

Substance	Solubi	Solubility in grammes per 100 g water a				
ast in	1	20°C	40° C	60°C		
Registratini.	0.334	0.16	0.097	0.0058		
Levis at	27.60	34.0	40.0	45.5		
L.	35.70	36.0	36.6	37.3		

or hit.	Select the substance which, when dissolved in water, heat is given out. Give a reason. (2 marks)
,	
16.	Starting with copper metal, describe how a sample of crystals of copper (II) chloride may be prepared in the laboratory. (3 marks)
	<u></u>
17.	A compound whose general formula is M(OH)3 reacts as shown by the equations below.
	$M(OH)_{3(S)} + OH_{(aq)} \longrightarrow M(OH)_{4(aq)}$
74	$M(OH)_{3(S)} + 3H^{+}_{(aq)} \rightarrow M^{3+}_{(aq)} + 3H_2O_{(I)}$
¥	(a) What name is given to compounds which behave like M(OH) ₃ in the two reactions. (1 mark)
	(b) Name two elements whose hydroxides behave like that of M. (2 marks

18. The grid below is part of the periodic table. Use it to answer the questions that follow. (The letters are not the actual symbols of the elements).

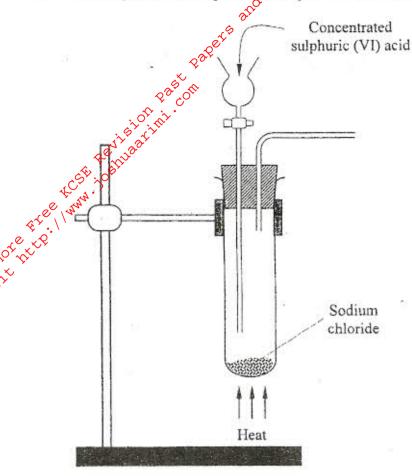
Aso Qu	R	s	
AN CHIQ		T	U
atup			

 Indicate on the grid the position of an element represented by letter. V whose atomic number is 14.

(b)	Select a letter which represents a monoatomic gas.	(1 mark)
-----	--	----------

.....

The following are half-cell reactions and their reduction potentials.


$$Zn^{2+}(aq) + 2e^{-} \longrightarrow Zn_{(s)}$$
 -0.76
 $Pb^{2+}(aq) + 2e^{-} \longrightarrow Pb(s)$ -0.13
 $Ag^{+}(aq) + e^{-} \longrightarrow Ag_{(s)}$ $+0.80$
 $Cu^{2+}(aq) + 2e^{-} \longrightarrow Cu_{(s)}$ $+0.30$

(a) Write the cell representation for the electrochemical cell that would give the highest E^Θ. (1 mark)

(b) State and explain the observations made when a copper rod is placed in a beaker containing silver nitrate solution. (2 marks)

20.	(a) State the Graham's law of diffusion.	(1 mark)
	2 ³ Q ^e ts	
8	$oldsymbol{ee}$.	
	, jon this.	4 - 1024 - 1
	(b) The molar masses of gases W and X are 16.0 and 44.0 diffusion of W through a porous material is 12 cm ³ s ⁻¹	respectively. If the rate of calculate the rate of diffusion
	Soft X through the same material.	(2 marks)
\$7ee	(b) The molar masses of gases W and X are 16.0 and 44.0 diprusion of W through a porous material is 12 cm ³ s ⁻¹ of X through the same material.	
POLINE		
3		
21.	The diagram below represents an experiment that was set up to ions during electrolysis.	to investigate movement of
Wes	Crocodile clip	# ## ## ## ## ## ## ## ## ## ## ## ## #
#) ≥		Wet filter paper
	Glass slide	
6.4		Copper (II) sulphate crystal
	When the circuit was completed, it was noticed that a blue co	lour spread towards the right.
	(a) Explain this observation.	(2 marks)
	(b) Write the equation for the reaction that occurred at the	e anode. (1 mark)
	Same was a superior and the superior and	

22. The diagram below is part of a set up used in the laboratory preparation of a gas.

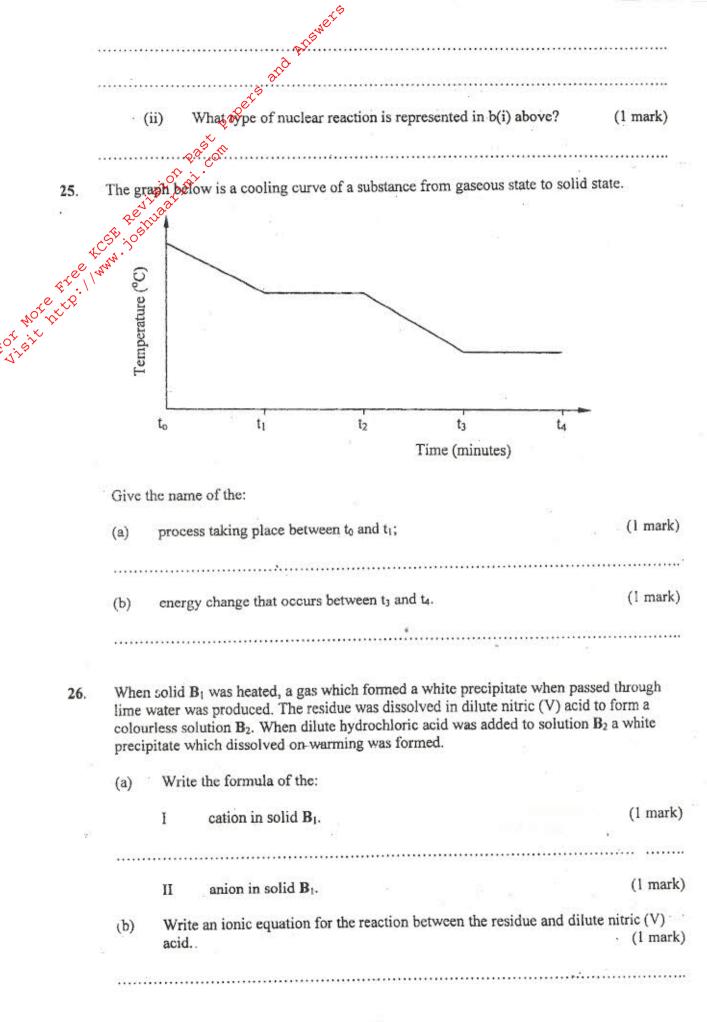
Complete the diagram to show how a dry sample of the gas can be collected. (3 marks)

 In a closed system, aqueous iron (III) chloride reacts with hydrogen sulphide gas as shown in the equation below.

$$2FeCl_{3(aq)} + H_2S_{(g)} \longrightarrow 2FeCl_{2(aq)} + 2HCl_{(aq)} + S_{(s)}$$

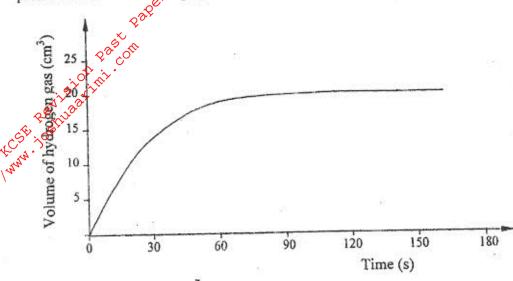
State and explain the observation that would be made if dilute hydrochloric acid is added to the system at equilibrium. (2 marks)

.


24. (a) A radioactive substance emits three different particles.

Give the symbol of the particle with the highest mass. (1 mark)

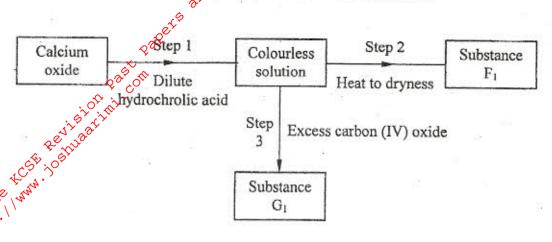
......


(b) (i) Find the values of Z₁ and Z₂ in the nuclear equation below.

$$\frac{Z_1}{92}U + \frac{1}{0}n \xrightarrow{94} Sr + \frac{140}{Z_2}X_{\varepsilon} + 2\frac{1}{0}n$$
 (1 mark)

7.	In an experiment to determine the percentage of magnesium hydroxide in an ar solution containing 0.50 g of the anti-acid was neutralized by 23.0 cm ³ of 0.10 hydrochloric acid. (Relative formula mass of magnesium hydroxide = 58) Calculate the:	nti-acid, a
	(a) mass of magnesium hydroxide in the anti-acid; Leaf Partition (b) percentage of magnesium hydroxide in the anti-acid.	(2 marks)
6° \	CSE 10 STO	
notoxidi,	(b) percentage of magnesium hydroxide in the anti-acid.	(1 mark)
28.	During the extraction of aluminium from its ores; the ore is first purified to obt The flow chart below shows the stages in the extraction of aluminium from alu	ain alumina.
	Alumina Step 1 Liquid aluminia Process Heat D ₁ Molten	1
	(a) Name:]
	(i) Substance C ₁ (ii) Process D ₁	(1 mark)(1 mark)
(25)	7	.,,
	(b) Give two reasons why aluminium is used extensively in the making of pans.	cooking (1 mark)

29. A certain mass of a metal E₁ reacted with excess dilute hydrochloric acid at 25°C. The volume of hydrogen gas liberated was measured after every 30 seconds. The results were presented as shown in the graph below.


(a) Name one piece of apparatus that may have been used to measure the volume of the gas liberated. (1 mark)

(b) (i) On the same axis, sketch the curve that would be obtained if the experiment was repeated at 35°C. (1 mark)

(ii)	Explain the shape of your curve in b(i) above.	(1 mark)

36. Crude oil contains sulphur. What would be the effect to the environment of using fuel containing sulphur? (1 mark)

31. Study the flow chart below and answer the questions that follow.

Give	the name of the process that takes place in step 1	· (1 mark
Give: (i)	the name of substance G ₁ .	(1 mark)
(ii)	one use of substance F ₁ .	(1 mark)
	Give: (i)	(i) the name of substance G ₁ .